In this chapter, we provide KSEEB SSLC Class 9 Maths Chapter 13 Surface Area and Volumes Ex 13.7 for English medium students, Which will very helpful for every student in their exams. Students can download the latest KSEEB SSLC Class 9 Maths Chapter 13 Surface Area and Volumes Ex 13.7 pdf, free KSEEB SSLC Class 9 Maths Chapter 13 Surface Area and Volumes Ex 13.7 pdf download. Now you will get step by step solution to each question.

**Karnataka State Syllabus Class 9 Maths Chapter 13 Surface Area and Volumes Ex 13.7**

## Karnataka Board Class 9 Maths Chapter 13 Surface Area and Volumes Ex 13.7

(Assume π = 227unless stated otherwise)

Question 1.

Find the volume of the right circular cone with

(i) radius 6 cm, height 7 cm.

(ii) radius 3.5 cm, slant height 12 cm.

Solution:

(i) Volume of Cone, V = 13πr2h

∴ V = 264 cm^{3}.

(ii) r = 3.5 cm, h = 12 cm.

Volume of Cone, V = 13πr2h

= 11 × 14

∴ V = 154 cm^{3}.

Question 2.

Find the capacity in litres of a conical vessel with

(i) radius 7 cm, slant height 25 cm.

(ii) height 12 cm, slant height 13 cm.

Solution:

(i) radius, r = 7 cm, slant height, l = 25 cm

Volume of conical vessel, V = 13πr2h

∴ h = 24 cm.

V = 13πr2h

= 22 × 7 × 8

∴ V = 1232 cm^{3}

∴ Volume of conical vessel

= 12321000 = 1.232 litres

(ii) height, h =12 cm, slant height, l = 13cm. r = ?, V = ? .

h^{2} = l^{2} – r^{2}

∴ r^{2} = l^{2} – h^{2}

∴ r = 5 cm.

Volume of vessel, V = 13πr2h

∴ V = 314.28 cm^{3}.

In litres, = 314.281000 = 0.31428 litres.

Question 3.

The height of a cone is 15 cm. If its volume is 1570 cm^{3}, find the radius of the base. (Use π = 3.14)

Solution:

Height of the cone, h = 15 cm.

Volume, V = 1570 cm^{3}, radius, r = ?

Volume of a cone. V = 13πr2h

r^{2} = 100

∴ r = 10 cm.

Question 4.

If the volume of a right circular cone of height 9 cm is 48π cm^{3}, find the diameter of its base.

Solution:

Volume of a right circular cone,V= 48π cm^{3},

height, h = 9 cm.

diameter, d = ?

Volume of cone, V = 13πr2h

∴ r^{2} = 16

∴ r = 4 cm

∴ diameter, d = 2r

= 2 × 4

∴ d = 8 cm.

Question 5.

A conical pit of top diameter 3.5 m is 12 m deep. What is its capacity in kilolitres?

Solution:

d = 3.5m., h = 12 m., V = ?

Volume of Conical pit, V

= 22 × 0.5 × 3.5

∴ V = 38.5 m^{3}

V = 38.5 kilolitres

Question 6.

The volume of a right circular cone is 9856 cm^{3}. If the diameter of the base is 28 cm, find

(i) height of the cone

(ii) slant height of the cone

(iii) curved surface area of the cone.

Solution:

Volume of Cone, V = 9856 cm^{3}

diameter of the base, d = 28 cm.

(i) h = ?,

(ii) I = ?,

(iii) C.S.A. = ?

(i) V = 9856 cm^{3}.

d = 28 cm. ∴ r = 282 = 14 cm.

Volume of cone, V= 13πr2h

h = 268856

h = 48 cm.

(ii) l^{2} = h^{2} + r^{2}

l = 50 cm.

(iii) Curved surface area of the cone, A

A = πrl

= 22 × 100

A= 2200 cm^{2}.

Question 7.

A right triangle ABC with sides 5 cm, 12 cm, and 13 cm is revolved about the side 12 cm. Find the volume of the solid so obtained.

Solution:

Cone is formed ∆ABC is revolved about the side 12 cm.

r = 5 cm,

h = 12 cm,

V = ?

Volume of Cone, V

∴ V = 314.29 cm^{3}.

Question 8.

If the triangle ABC in Question 7 above is revolved about the side 5 cm, then find the volume of the solid so obtained. Find also the ratio of the volumes of the two solids obtained in Questions 7 and 8.

Solution:

Cone is formed when ∆ABC is revolved about 5 cm.

r = 12 cm,

h = 5 cm.

Volume of Cone, V

v = 13πr2h

V = 754.28 cm^{3}.

Volume of Cone in problem 7 = 314.29 cm^{3}

Volume of Cone in problem 8 = 754.28 cm^{3}

∴ ratio of both Volumes = 314.29754.28

= 52 = 5 : 12

Question 9.

A heap of wheat is in the form of a cone whose diameter is 10.5 m and height is 3 m. Find ifs volume. The heap is to be covered by canvas to protect it from rain. Find the area of the canvas required.

Solution:

Diameter of heap of wheat in the form of Cone,

diameter, d = 10.5 m = 212

height, h = 3 m. V = ?

Volume of Canvas Cover, V = 13πr2h

= 86.625 m^{3}.

Area of Canvas required to cover a heap of wheat, C.S.A.

C.S.A.= πrl

∴ Area of Canvas, A = πrl

∴ A = 99.83 m^{2}.

**All Chapter KSEEB Solutions For Class 9 Maths**

—————————————————————————–**All Subject KSEEB Solutions For Class 9**

*************************************************

I think you got complete solutions for this chapter. If You have any queries regarding this chapter, please comment on the below section our subject teacher will answer you. We tried our best to give complete solutions so you got good marks in your exam.

If these solutions have helped you, you can also share kseebsolutionsfor.com to your friends.

**Best of Luck!!**