KSEEB Solutions for Class 8 Maths Chapter 3 Axioms, Postulates, and Theorems Additional Questions

In this chapter, we provide KSEEB SSLC Class 8 Maths Chapter 3 Axioms, Postulates and Theorems Additional Questions for English medium students, Which will very helpful for every student in their exams. Students can download the latest KSEEB SSLC Class 8 Maths Chapter 3 Axioms, Postulates and Theorems Additional Questions pdf, free KSEEB SSLC Class 8 Maths Chapter 3 Axioms, Postulates and Theorems Additional Questions pdf download. Now you will get step by step solution to each question.

Karnataka State Syllabus Class 8 Maths Chapter 3 Axioms, Postulates and Theorems Additional Questions

Karnataka State Syllabus Class 8 Maths Chapter 3 Axioms, Postulates and Theorems Additional Questions

Question 1.
Choose the correct option
(i) If a = 6 and b = a, then b = 60 by _______
A. Axiom 1
B. Axiom 2
C. Axiom 3
D. Axiom 4
Solution:
A. Axiom 1

(ii) Given a point on the plane, one can draw ________
A. unique
B. two
C. finite numberd
D. infinitely many
Solution:
(D) Infinetly many lines through that point.

(iii) Given two points in a plane, the number of lines which can be drawn to pass through these two points is ________
A. Zero
B. exactly one
C. at most one
D. more than one
Solution:
(B) Exactly one

(iv) If two angles are supplementary, then their sum is
A. 90°
B. 180°
C. 270°
D. 360°
Solution:
(B) 180°

(v) The measure of an angle which is 5 times its supplement is _________
A. 30°
B. 60°
C. 120°
D. 150°
Solution:
(D) 150°

Question 2.
What is the difference between a pair of supplementary angles and a pair of complementary angles?
Solution:
If the sum of two angles is 180° then they are supplementary angles. If the sum of two angles is 90° then they are complementary angles.

Question 3.
What is the least number of non – collinear points required to determine a plane?
Solution:
Three (3)

Question 4.
When do you say two angles are adjacent?
Solution:
Two angles are said to be adjacent angles if they have a common vertex and a common side.

∠ AUV – ∠CVP = 70°
[corresponding angles]
∠QUB – ∠AUV = 70° [vertically opposite angles]
∠BUW + ∠DWU = 180° [Interior angles on the same side of transversal]
∠BUW + 110°= 180°
∠BUW = 180-110° = 70°
∠BUW = ∠AUS= 70° [vertically opposite angles]
∠AUS + ∠SUQ + ∠QUB = 180° ∠AUB is a straight angle]
70 + ∠SUQ + 70 = 180°
∠SUQ + 140° = 180°
∠SUQ = 180° – 140°
∠SUQ = 40°

Question 9.
What is the angle between the hours hand and minutes hand of a clock at (i) 1.40 hours (ii) 2.15 hours [use 1° = 60 minutes]
Solution:
i. 1.40 hours – 190°
ii. 2.15 hours – 22° 30′

Question 10.
How much would hour’s hand have moved from its position at 12 noon when the time is 4.24 p.m?
Solution:
144°

∠DOX = ∠BOX [ ∵OX−→− bisects ∠BOD]
∠DOX =∠COY [vertically opposite angles] ….(i)
∠BOX = ∠AOY
[vertically opposite anglesj … (ii)
From (i) and (ii)
[vertically opposite] …(ii)
∠AQY – ∠COY [Axiom 1]
∴ OX−→− bisects ∠AOC

∴ ∠DCY = 180° – ∠CDE
∠BCX + ∠BCD + ∠DCY = 180° [∵ XCY is straight angle]
180 – ∠ABC + ∠BCD + 180 – ∠CDE = 180° [By substituting]
360 – ∠ABC + ∠BCD – ∠CDE – 180°
360 – 180 – ∠ABC – ∠BCD + CDE
180° = ∠ABC – ∠BCD + ∠CDE
or
∠ABC – ∠BCD + ∠CDE = 180°

Question 17.
Consider two parallel lines and a transversal among the measures of 8 angles formed how many distinct numbers are there?
Solution:
There will be two distinct numbers.

All Chapter KSEEB Solutions For Class 8 maths

—————————————————————————–

All Subject KSEEB Solutions For Class 9

*************************************************

I think you got complete solutions for this chapter. If You have any queries regarding this chapter, please comment on the below section our subject teacher will answer you. We tried our best to give complete solutions so you got good marks in your exam.

If these solutions have helped you, you can also share kseebsolutionsfor.com to your friends.

Best of Luck!!

Leave a Comment

Your email address will not be published.